反馈咨询
欢迎添加微信!
微信号:z_gqing
微信二维码:

介绍

ROC用于评估二元分类模型性能的图形化方法。 程序使用的R语言的pROC包。 该曲线的横坐标为灵敏度(sensitivity),即模型预测某个类别的概率; 纵坐标为特异性(specificity),即模型预测为某个类别而实际为另一个类别的概率。 ROC曲线的斜率表示灵敏度和特异性的比值,比值越接近1,说明模型性能越好。

输入

丰度表: 例如, # a1 a2 a3 b1 b2 b3 var1 10 34 51 19 21 31 var2 22 21 41 89 78 79 var3 66 87 56 76 89 90 var4 18 37 46 55 54 63 var5 19 40 50 61 58 76 分组文件: 例如 #sample group a1 a a2 a a3 a b1 b b2 b b3 b

结果

roc_curve.xls 例如, specificity sensitivity 0 100 33.3333333333333 100 66.6666666666667 100 100 100 100 33.3333333333333 100 0 roc_auc.xls 例如, nf_level min_auc mean_auc max_auc 0.9 100 100 100 best_loc.xls 例如, specificity specificity.5% specificity.50% specificity.95% sensitivity.5% sensitivity.50% sensitivity.95% 54.4 100 100 100 100 100 100
通明学练 数据挖掘 NGplot绘图 NewMer生信首页

关注我们获取最新动态和更多干货内容

微信公众号:NewMer生信 小红书号:NewMer B站:Newmer生信 抖音:NewMer生信 知乎:NewMer生信 客服微信号:z_gqing
Copyright © 2021-2025 上海牛马人生物科技有限公司 沪ICP备 2022007390号-2