Soil microorganisms play important roles in vegetation establishment and soil biogeochemical cycling. Ammodendron bifolium is a dominant sand-fixing and endangered plant in Takeermohuer Desert, and bacterial community associated with this plant rhizosphere is still unclear. In this study, we studied the composition and diversity of bacterial community from A. bifolium rhizosphere and bulk soil at different soil depths (i.e., 0-40 cm, 40-80 cm, 80-120 cm) using traditional bacterial isolation and high-throughput sequencing approaches, and preliminarily analyzed the edaphic factors influencing the structure of bacterial communities. Results showed that Takeermohuer Desert with high salinity has been an oligotrophic environment, while the rhizosphere exhibited eutrophication resulting from high content SOM (soil organic matter) and SAN (soil alkaline nitrogen) compared with bulk soil. The dominant bacterial groups in the desert were Actinobacteria (39.8%), Proteobacteria (17.4%), Acidobacteria (10.2%), Bacteroidetes (6.3%), Firmicutes (6.3%), Chloroflexi (5.6%), and Planctomycetes (5.0%) at the phyla level. However, the relative abundances of Proteobacteria (20.2%) and Planctomycetes (6.1%) were higher in eutrophic rhizosphere, and Firmicutes (9.8%) and Chloroflexi (6.9%) relatively higher in barren bulk soil. A large number of Actinobacteria were detected in all soil samples, of which the most abundant genus was Streptomyces (5.4%) and Actinomadura (8.2%) in the bulk soil and rhizosphere, respectively. The Chao1 and PD indexes in rhizosphere were significantly higher than those in bulk soil at the same soil depth, and tended to decrease with increasing soil depth. Co-occurrence network analyses showed that the keystone species in Takeermohuer Desert were Actinobacteria, Acidobacteria, Proteobacteria, and Chlorofexi. Furthermore, the major environmental factors affecting rhizosphere bacterial community were EC (electrical conductivity), SOM, STN (soil total nitrogen), SAN, and SAK (soil available potassium), while bulk soil were distance and C/N (STC/STN). We concluded that A. bifolium rhizosphere bacterial community is different from non-rhizosphere in composition, distribution, and environmental influencing factors, which will have important significances for understanding their ecological functions and maintaining biodiversity.