Multiomic studies, including RNA sequencing, single-cell RNA sequencing, and epigenomics, can provide insight into the connection between anatomically heterogeneous gene expression profile of the skin and dermatoses-predisposed sites, in which RNA sequencing is essential. Therefore, in this study, 159 skin samples collected mainly from discarded normal skin tissue during surgical treatment for benign skin tumors were used for RNA sequencing. On the basis of cluster analysis, the skin was divided into four regions, with each region showing specific physiological characteristics through differentially expressed gene analysis. The results showed that the head and neck region, perineum, and palmoplantar area were closely associated with lipid metabolism, hormone metabolism, blood circulation, and related neural regulation, respectively. Transcription factor enrichment indicated that different regions were associated with the development of adjacent tissues. Specifically, the head and neck region, trunk and extremities, perineum, and palmoplantar area were associated with the central nervous, axial, urogenital, and vascular systems, respectively. The results were imported into an open website (https://dermvis.github.io/) for retrieval. Our transcriptomic data elucidated that human skin exhibits transcriptomic heterogeneity reflecting physiological and developmental variation at different anatomic sites and provided guidance for further studies on skin development and dermatoses predisposed sites.