Disparity in the activity of Endoplasmic reticulum (ER) leads to degenerative diseases, mainly associated with protein misfolding and aggregation leading to cellular dysfunction and damage, ultimately contributing to ER stress. ER stress activates the complex network of Unfolded Protein Response (UPR) signaling pathways mediated by transmembrane proteins IRE1, ATF6, and PERK. In addition to UPR, many ER chaperones have evolved to optimize the output of properly folded secretory and membrane proteins. Glucose-regulated protein 94 (GRP94), an ER chaperone of heat shock protein HSP90 family, directs protein folding through interaction with other components of the ER protein folding machinery and assists in ER-associated degradation (ERAD). Activation of GRP94 would increase the efficacy of protein folding machinery and regulate the UPR pathway toward homeostasis. The present study aims to screen for novel agonists for GRP94 based on Core hopping, pharmacophore hypothesis, 3D-QSAR, and virtual screening with small-molecule compound libraries in order to improve the efficiency of native protein folding by enhancing GRP94 chaperone activity, therefore to reduce protein misfolding and aggregation. In this study, we have employed the strategy of small molecule-dependent ER programming to enhance the chaperone activity of GRP94 through scaffold hopping-based screening approach to identify specific GRP94 agonists. New scaffolds generated by altering the cores of NECA, the known GRP94 agonist, were validated by employing pharmacophore hypothesis testing, 3D-QSAR modeling, and molecular dynamics simulations. This facilitated the identification of small molecules to improve the efficiency of native protein folding by enhancing GRP94 activity. High-throughput virtual screening of the selected pharmacophore hypothesis against Selleckchem and ZINC databases retrieved a total of 2,27,081 compounds. Further analysis on docking and ADMET properties revealed Epimedin A, Narcissoside, Eriocitrin 1,2,3,4,6-O-Pentagalloylglucose, Secoisolariciresinol diglucoside, ZINC92952357, ZINC67650204, and ZINC72457930 as potential lead molecules. The stability and interaction of these small molecules were far better than the known agonist, NECA indicating their efficacy in selectively alleviating ER stress-associated pathogenesis. These results substantiate the fact that small molecule-dependent ER reprogramming would activate the ER chaperones and therefore reduce the protein misfolding as well as aggregation associated with ER stress in order to restore cellular homeostasis.