In this study, we compared the characteristics of different uropathogenic Escherichia coli phylogroups. A total of 844 E. coli isolated from urine were enrolled and the antimicrobial susceptibility of E. coli to 22 antibiotics was determined by disk diffusion test. The distribution of phylogroups and 20 virulence factor genes was determined by PCR. Phenotypes associated with bacterial virulence, including motility, biofilm formation, and the production of curli and siderophore, were examined. Phylogroup B2 was dominant in our isolates (64.8%), followed by phylogroups D (8.6%), B1 (7.8%), F (6.0%), C (4.5%), A (3.1%), untypable (2.8%), E (1.8%), and clade I (0.5%). The prevalence of multidrug-resistant strains was highest in phylogroup C (86.8%), followed by E (80.0%), F (75.0%), and D (71.2%). Moreover, 23.5% of the phylogroup F E. coli were extensively drug-resistant. Phylogroup B2 E. coli had an average of the highest virulence factor genes (10.1 genes/isolate). Compared to phylogroup B2 E. coli, phylogroups F and clade I E. coli had higher motility while phylogroup C E. coli had lower motility. >60% of phylogroups A and C E. coli showed very low curli production. In contrast, 14%, 10%, and 7%, of E. coli in phylogroups F, B2, and E, produced a very high amount of curli, respectively. Surprisingly, phylogroup A E. coli showed the highest virulence to larvae, followed by phylogroups B2 and C. In summary, we first characterized and revealed that the antimicrobial resistance, virulence gene distribution, motility, and curli production, were associated with in E. coli phylogroups.