A polyphasic taxonomic approach was used to characterize a novel bacterium, designated strain CC-YST710T, isolated from poultry manure sampled in Taiwan. Cells of strain CC-YST710T were aerobic, Gram-stain-negative, nonmotile, nonspore-forming rods, displaying positive reactions for catalase, and oxidase activities. Strain CC-YST710T was found to grow optimally at 30°C, pH 7.0, and in the presence of 2% (w/v) NaCl. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, four unidentified aminolipids, one unidentified aminophospholipid, and five unidentified lipids. The major polyamine was spermidine. The dominating cellular fatty acids (> 5%) included C16:0, C18:0, and C18:1ω7c/C18:1ω6c. Based on 16S rRNA gene analysis, this isolate showed the closest phylogenetic relationship with 'Pseudogemmobacter humicola' (97.6%), followed by Pseudogemmobacter bohemicus (97.2%) and 'Pseudogemmobacter hezensis' (97.5%). The draft genome (4.3 Mb) had 62.9 mol% G + C content. CC-YST710T can be distinguished from other Pseudogemmobacter species due to the exclusive presence of key genes encoding p-hydroxybenzoate hydroxylase, protocatechuate 3, 4-dioxygenase (α and β chain), and homogentisate 1, 2-dioxygenase involved in the degradation of phenolic compounds such as p-hydroxybenzoic acid, protocatechuate, and homogentisate, respectively. Orthologous average nucleotide identity (OrthoANI) of the isolate with the type strains of the genera Pseudogemmobacter were 77.6%‒78.0% (n = 3), followed by Tabrizicola (72.3%‒73.7%, n = 5), and Gemmobacter(72.3%‒73.5%, n = 7). Based on its distinct phylogenetic, phenotypic, and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, OrthoANI, digital DDH, and the phylogenomic placement, strain CC-YST710T is considered to represent a novel Pseudogemmobacter species, for which the name Pseudogemmobacter faecipullorum sp. nov. (type strain CC-YST710T = BCRC 81286T = JCM 34182T).