Plant cell walls of Poaceae and eudicots differ substantially, both in the content and composition of their components. However, the genomic and genetic basis underlying these differences is not fully resolved. In this research, we analyzed multiple genomic properties of 150 cell wall gene families across 169 angiosperm genomes. The properties analyzed include gene presence/absence, copy number, synteny, occurrence of tandem gene clusters, and phylogenetic gene diversity. Results revealed a profound genomic differentiation of cell wall genes between Poaceae and eudicots, often associated to the cell wall diversity between these plant groups. For example, overall patterns of gene copy number variation and synteny were clearly divergent between Poaceae and eudicot species. Moreover, differential Poaceae-eudicot copy number and genomic contexts were observed for all the genes within the BEL1-like HOMEODOMAIN 6 regulatory pathway, which respectively induces and represses secondary cell wall synthesis in Poaceae and eudicots. Similarly, divergent synteny, copy number, and phylogenetic gene diversification were observed for the major biosynthetic genes of xyloglucans, mannans, and xylans, potentially contributing to the differences in content and types of hemicellulosic polysaccharides differences in Poaceae and eudicot cell walls. Additionally, the Poaceae-specific tandem clusters and/or higher copy number of PHENYLALANINE AMMONIA-LYASE, CAFFEIC ACID O-METHYLTRANSFERASE, or PEROXIDASE genes may underly the higher content and larger variety of phenylpropanoid compounds observed in Poaceae cell walls. All these patterns are discussed in detail in this study, along with their evolutionary and biological relevance for cell wall (genomic) diversification between Poaceae and eudicots.