In recent decades, advances in chemical synthesis and delivery systems have accelerated the development of therapeutic nucleic acids, several of which have been approved by the Us Food and Drug Administration (FDA). Oral nucleic acid delivery is preferred because of its simplicity and patient compliance, but it still presents distinct challenges. The negative charge, hydrophilicity, and large molecular weight of nucleic acids combined with in vivo gastrointestinal (GI) barriers (e.g., acidic pH, enzymes, mucus, and intestinal epithelial cells) severely hinder their delivery efficacy. Recently, various nanoparticles (NPs), ranging from polymeric to lipid-based (L)NPs and extracellular vesicles (EVs), have been extensively explored to address these obstacles. In this review, we describe the physiological barriers in the GI tract and summarize recent advances in NP-based oral nucleic acid therapeutics.