Cordycepin, a nucleoside from Cordyceps mushrooms, has many beneficial properties for health, including anticancer activities. In cancer cells, cordycepin targets various signaling molecules. Here, we review the possible anticancer mechanisms of cordycepin involving the targeting of kinases. Abnormal kinase expression is involved in cancer development and progression through different molecular mechanisms, including phosphorylation, amplification, genetic mutations, and epigenetic regulation. Research suggests that kinases, such as the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), AMP kinase (AMPK), phosphoinositide 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK)-3β, and focal adhesion kinase (FAK) pathways, can be targeted by cordycepin and disrupting their activity. Given that kinase inhibitors can have crucial roles in cancer treatment, targeting kinases might be one of the molecular mechanisms involved in the anticancer potential of cordycepin.